Application of orthogonal functions to the spectrophotometric determination of phenytoin in pharmaceutical preparations

M. M. AMER, A. K. S. AHMED AND S. M. HASSAN*

Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, and the *Pharmaceutical Chemistry Department, Faculty of Pharmacy, Mansura University, Mansura, Egypt

A simple ultraviolet spectrophotometric method for the determination of phenytoin in pharmaceutical preparations has been developed. The mean was 100.9% (6 determinations) and the coefficient of variation was 1.2%. The method was applied successfully to the determination of phenytoin in capsules and suspensions.

Methods for the determination of phenytoin include non-aqueous titration (Sellés & Flores, 1955; Ruggeri, 1956; Vincent & Blake, 1958; Rink & Schuster, 1960), argentimetric (Kalinoswka, Podkowska & Mieszczakowska, 1963) and complexometric (Hentrich & Pfeifer, 1967) methods. These methods are non specific and to achieve better selectivity, preliminary purification using either ionexchange resin (Vincent & Blake, 1958) or partition column chromatography on Celite 535 (Hentrich & Pfeifer, 1967) have been suggested. The B.P. 1973 still recommends a gravimetric method for its determination in tablets.

Although phenytoin has no specific absorption in acid or alkaline media, a hyperchromic effect is demonstrated over the whole spectrum (220-274 nm) on changing the medium from the acid to the alkaline side which allows for the possibility of applying the ΔA (Aulin-Erdtman, 1955) and Δp_2 (Abdine, Wahbi & Korany, 1972) methods (Fig. 1).

MATERIALS AND METHODS

Reagents and chemicals: Diphenylhydantoin (phenytoin); borate buffer 0.05M, pH 10; 0.1 N hydrochloric acid; 0.1 N sodium hydroxide; diethyl ether, solvent grade. All are chemically pure and pass the B.P. 1973 requirements.

A. Determination of phenytoin in capsules

Dissolve an accurate weight of the contents, containing about 100 mg of phenytoin, as completely as possible by stirring for a few minutes with 20 ml of 0.1 N sodium hydroxide in a small beaker. Transfer the solution quantitatively to a 100 ml

volumetric flask with the aid of a few ml of the borate buffer solution and make up to volume with the same buffer. Filter, if necessary, transfer two 2-ml aliquots of the solution into two 100 ml volumetric flasks and make up to volume using 0.1 N hydrochloric acid in one flask and the borate buffer of pH 10 in the second flask. Measure the absorbances of a 1 cm pathlength of both solutions in the range 222 to 252 nm with 6 nm intervals and also at 232 nm. Calculate the content of phenytoin (i) from a calibration curve representing Δp_2 against concentration, where Δp_2 is the coefficient difference of the acid solution from that at pH 10, and (ii) from a calibration curve of ΔA vs concentration where ΔA is the absorbance difference at 232 nm. The coefficient p_2 is calculated for each solution as follows:

$$p_2 = (5 A_{222} - A_{228} - 4 A_{234} - 4 A_{240} - A_{246} + 5 A_{252})/84$$

B. Determination of phenytoin in suspensions

Transfer 5 ml of the suspension (equivalent to 30 mg of phenytoin) into a 100 ml separating funnel, add 30 ml of 0.1 N sodium hydroxide, mix well then dilute with 20 ml of distilled water. Pass a stream of carbon dioxide through the solution for about 10 min or until no more phenytoin is precipitated. Extract once with 50 ml of ether, then with further 3×20 ml of ether. Wash the combined ether extracts with 2 \times 10 ml portions of water and reject the washings. Extract the washed ether layer with 3 \times 10 ml of 0.1 N sodium hydroxide followed by 2×10 ml of distilled water and reject the ether. Pass a stream of carbon dioxide-free air through the combined aqueous extract until no more ethereal odour is detected. Transfer two 5 ml aliquots of the aqueous solution to two 100 ml volumetric flasks and make up to volume with 0.1 N hydrochloric acid in one flask and with the borate buffer (pH 10) in the second flask. Complete as under 'A', starting with the words, 'Measure the absorbances...'.

DISCUSSION

The results obtained in Table 1, were subjected to statistical analysis. Student's t-test showed a non-

Table 1. Application of the Δp_2 and ΔA methods to the determination of phenytoin.

Sample	Used	Recove	ery %
No.	mg/100 ml	Δp_2	ΔA
1	1.0	98.96	98.55
2	1.2	101.50	96.30
3	1.4	102.46	97.81
4	1.6	101.39	106.29
5	1.8	100.46	100.78
6	2.0	100.57	98 .12
Mean and confidence		100.89	99.64
limits (P =	= 0.05)	± 1.25	± 3.74

significant difference between the two mean percentage recoveries; the calculated value of t was found to be 0.8148 (theoretical value 2.228 at P =0.05). However, the variance ratio, F, was 8.9528 (theoretical value 5.1 at P = 0.05) indicating that there is a significant difference between the precision of the two methods. The ΔA method is considered to be less precise than the Δp_2 method. The coefficient of variation calculated for five separate determinations of Δp_2 (1%, 1 cm) at the chosen set of wavelengths was found to be 0.94%; the corre-

Table 2. Recovery experiments of added phenytoin to pharmaceutical preparations. $(\Delta p_2 \text{ method})$.

Sample No.	Preparation and stated concn (mg/capsule or per 5 ml suspension)	Found (mg)	Standard addition (mg)	Recovery %
1	Capsules (PD) (50 mg)	53·0	60 100	101·50 99·12
2	Capsules (PD) (100 mg)	97.0	60 100	98·32 100·48
3	Capsules (Nile Co.) (100 mg)	102-0	80 100	100·86 99·97
4	Susp. (PD) (30 mg)	31-64	11 20	98·67 98·80
5	Susp. (PD) (30 mg)	29.20	12 20	100·92 99·45

PD-Parke Davis & Co.

FIG. 1. Absorption curves for 2 mg/100 ml of phenytoin in 0.1 N hydrochloric acid (----), in borate buffer pH 10 (\cdots ··), and the ΔA curve derived from the acid and pH 10 solvents (--·--·).

sponding value for ΔA (1%, 1 cm) at 232 nm was 1.19%.

The assumptions that, for a good ΔA method, the difference in absorbance at the analytical wavelength should be not less than 0.43 (Twyman & Lothian, 1933) and that the sum of the absorbances in both media should not exceed 1.0 (Junejo & Glenn, 1956) may explain the less satisfactory results of the ΔA method. In the present case, these two assumptions are not fulfilled as evidenced in Fig. 1.

FIG. 2. ΔA curves for phenytoin (2 mg/100 ml) (---, phenytoin suspension directly diluted (1.2 mg/100 ml) (---), and phenytoin suspension after ether extraction (1.2 mg/100 ml) (····) [0.1 N hydrochloric acid and buffer solution of pH 10 solvents].

The method has been applied to the analysis of phenytoin in the presence of lactose; a mean percentage recovery of 101.68 ± 0.95 (P = 0.05) was obtained (5 experiments). This indicates that lactose, which is the main potential source of interference in tablets and hard capsules, does not interfere (Table 2).

When the proposed Δp_2 method for the determination of phenytoin was applied directly to phenytoin suspension without prior purification, erroneous results are obtained. To detect the source of interference, the graph of log $|\Delta A|$ vs wavelength of the phenytoin suspension derived from absorbances of solutions in alkaline and acid media was compared with a similar graph of pure phenytoin over the wavelength range 222 to 252 nm. The two graphs were not superimposable indicating that there was interference due to some pH-sensitive absorbing impurities (Fig. 2), but the impurities were removed by the procedure described in the experimental part of this paper (Table 2).

REFERENCES

ABDINE, H., WAHBI, A. M. & KORANY, M. A. (1972). J. Pharm. Pharmac., 24, 518-521.

AULIN-ERDTMAN, G. (1955). Chemy Ind., 74, 581-582.

British Pharmacopoeia (1973). p. 367. London: The Pharmaceutical Press.

HENTRICH, K. & PFEIFER, S. (1967). Die Pharmazie, 22, 666-667.

JUNEJO, G. M. & GLENN, A. L. (1956). Chemy Ind., 75, 813-814.

KALINOWSKA, Z. E., PODKOWSKA, L. & MIESZCZAKOWSKA, J. (1963). Farm. Polska, 19, 329-31. Through Chem. Abstr., 60: 10478 g.

RINK, M. & SCHUSTER, G. (1960). Dt. Apoth. Ztg., 100, 842-845.

RUGGIERI, R. (1956). Boll. Chim. Farm., 95, 382-387.

Sellés, E. & Flores, E. S. (1955). Galenica Acta (Madrid), 8, 291-294. Through Chem. Abstr. 51:2235a.

TWYMAN, F. & LOTHIAN, G. F. (1933). Proc. phys. Soc., 45, 643.

VINCENT, M. C. & BLAKE, M. I. (1958). Drug Standards, 26, 206-207.